一、分水岭算法简介
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。 分水岭算法一般和区域生长法或聚类分析法相结合。分水岭算法一般用于分割感兴趣的图像区域,应用如细胞边界的分割,分割出相片中的头像等等。
二、分水岭用opencv函数实现
分水岭算法在opencv2库中实现函数是:
头文件:#include <opencv2/imgproc/imgproc.hpp>
函数声明:CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
参数:
InputArray image 要分割的原始图片
InputOutputArray markers 标记数组,非零的32位有符号的int型数组,用于标记出要分割的关键点,进而区域生长,扩展出感兴趣的区域。
实现程序: watershedSegmenter.h
#if !defined WATERSHS
#define WATERSHS
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
class WatershedSegmenter {
private:
cv::Mat markers;
public:
void setMarkers(const cv::Mat& markerImage) {
// Convert to image of ints
markerImage.convertTo(markers,CV_32S);
}
cv::Mat process(const cv::Mat &image) {
// Apply watershed
cv::watershed(image,markers);
return markers;
}
// Return result in the form of an image
cv::Mat getSegmentation() {
cv::Mat tmp;
// all segment with label higher than 255
// will be assigned value 255
markers.convertTo(tmp,CV_8U);
return tmp;
}
// Return watershed in the form of an image
cv::Mat getWatersheds() {
cv::Mat tmp;
markers.convertTo(tmp,CV_8U,255,255);
return tmp;
}
};
#endif segment.cpp
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "watershedSegmentation.h"
int main()
{
// Read input image
cv::Mat image= cv::imread("group.jpg");
if (!image.data)
return 0;
// Display the image
cv::namedWindow("Original Image");
cv::imshow("Original Image",image);
// Get the binary map
cv::Mat binary;
binary= cv::imread("binary.bmp",0);
// Display the binary image
cv::namedWindow("Binary Image");
cv::imshow("Binary Image",binary);
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);
// Display the foreground image
cv::namedWindow("Foreground Image");
cv::imshow("Foreground Image",fg);
cv::imwrite("ForegroundImage.jpg",fg);
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);
// Display the background image
cv::namedWindow("Background Image");
cv::imshow("Background Image",bg);
cv::imwrite("BackgroundImage.jpg",bg);
// Show markers image
cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
markers= fg+bg;
cv::namedWindow("Markers");
cv::imshow("Markers",markers);
cv::imwrite("Markers.jpg",markers);
// Create watershed segmentation object
WatershedSegmenter segmenter;
// Set markers and process
segmenter.setMarkers(markers);
segmenter.process(image);
// Display segmentation result
cv::namedWindow("Segmentation");
cv::imshow("Segmentation",segmenter.getSegmentation());
cv::imwrite("Segmentation.jpg",segmenter.getSegmentation());
// Display watersheds
cv::namedWindow("Watersheds");
cv::imshow("Watersheds",segmenter.getWatersheds());
cv::imwrite("Watersheds.jpg",segmenter.getWatersheds());
// Open another image
image= cv::imread("tower.jpg");
// Identify background pixels
cv::Mat imageMask(image.size(),CV_8U,cv::Scalar(0));
cv::rectangle(imageMask,cv::Point(5,5),cv::Point(image.cols-5,image.rows-5),cv::Scalar(255),3);
// Identify foreground pixels (in the middle of the image)
cv::rectangle(imageMask,cv::Point(image.cols/2-10,image.rows/2-10),
cv::Point(image.cols/2+10,image.rows/2+10),cv::Scalar(1),10);
// Set markers and process
segmenter.setMarkers(imageMask);
segmenter.process(image);
// Display the image with markers
cv::rectangle(image,cv::Point(5,5),cv::Point(image.cols-5,image.rows-5),cv::Scalar(255,255,255),3);
cv::rectangle(image,cv::Point(image.cols/2-10,image.rows/2-10),
cv::Point(image.cols/2+10,image.rows/2+10),cv::Scalar(1,1,1),10);
cv::namedWindow("Image with marker");
cv::imshow("Image with marker",image);
cv::imwrite("Image with marker.jpg",image);
// Display watersheds
cv::namedWindow("Watersheds of foreground object");
cv::imshow("Watersheds of foreground object",segmenter.getWatersheds());
cv::imwrite("Watersheds of foreground object.jpg",segmenter.getWatersheds());
cv::waitKey();
return 0;
} 程序运行结果:
group.jpg

binary.bmp

fg

bg

markers

Segmentation

Watersheds

tower.jpg

Image with marker.jpg

Watersheds of foreground object.jpg

收藏的用户(0) X
正在加载信息~
推荐阅读
最新回复 (0)
站点信息
- 文章2313
- 用户1336
- 访客11746093
每日一句
Light follows every storm.
风暴后总有光。
风暴后总有光。
新会员