1、前言 目前“以图搜图”的引擎越来越多,可参考博文:http://blog.csdn.net/forthcriminson/article/details/8698175 此篇博文中列出了很多“以图搜图”的引擎,之前很好奇他们是如何进行检索的,偶然间看到了一篇博客,上面说Google和Tineye主要利用的算法是感知哈希算法(Perceptual hash algorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似,里面介绍的原理也比较简单,正好目前也在做图像检索方面的课题,就用OpenCV实现了一下,供大家参考,本篇博文主要介绍如何通过OpenCV实现均值Hash和pHash算法,基本原理和流程会在代码的注释中详细说明。
2、均值Hash算法
3、pHash算法
4、汉明距离计算
5、opencv实现的测试代码
2、均值Hash算法
//均值Hash算法
string HashValue(Mat &src)
{
string rst(64,'\0');
Mat img;
if(src.channels()==3)
cvtColor(src,img,CV_BGR2GRAY);
else
img=src.clone();
/*第一步,缩小尺寸。
将图片缩小到8x8的尺寸,总共64个像素,去除图片的细节*/
resize(img,img,Size(8,8));
/* 第二步,简化色彩(Color Reduce)。
将缩小后的图片,转为64级灰度。*/
uchar *pData;
for(int i=0;i<img.rows;i++)
{
pData = img.ptr<uchar>(i);
for(int j=0;j<img.cols;j++)
{
pData[j]=pData[j]/4; }
}
/* 第三步,计算平均值。
计算所有64个像素的灰度平均值。*/
int average = mean(img).val[0];
/* 第四步,比较像素的灰度。
将每个像素的灰度,与平均值进行比较。大于或等于平均值记为1,小于平均值记为0*/
Mat mask= (img>=(uchar)average);
/* 第五步,计算哈希值。*/
int index = 0;
for(int i=0;i<mask.rows;i++)
{
pData = mask.ptr<uchar>(i);
for(int j=0;j<mask.cols;j++)
{
if(pData[j]==0)
rst[index++]='0';
else
rst[index++]='1';
}
}
return rst;
} 3、pHash算法
//pHash算法
string pHashValue(Mat &src)
{
Mat img ,dst;
string rst(64,'\0');
double dIdex[64];
double mean = 0.0;
int k = 0;
if(src.channels()==3)
{
cvtColor(src,src,CV_BGR2GRAY);
img = Mat_<double>(src);
}
else
{
img = Mat_<double>(src);
}
/* 第一步,缩放尺寸*/
resize(img, img, Size(8,8));
/* 第二步,离散余弦变换,DCT系数求取*/
dct(img, dst);
/* 第三步,求取DCT系数均值(左上角8*8区块的DCT系数)*/
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 8; ++j)
{
dIdex[k] = dst.at<double>(i, j);
mean += dst.at<double>(i, j)/64;
++k;
}
}
/* 第四步,计算哈希值。*/
for (int i =0;i<64;++i)
{
if (dIdex[i]>=mean)
{
rst[i]='1';
}
else
{
rst[i]='0';
}
}
return rst;
} 4、汉明距离计算
//汉明距离计算
int HanmingDistance(string &str1,string &str2)
{
if((str1.size()!=64)||(str2.size()!=64))
return -1;
int difference = 0;
for(int i=0;i<64;i++)
{
if(str1[i]!=str2[i])
difference++;
}
return difference;
} 5、opencv实现的测试代码
string strSrcImageName = "src.jpg";
cv::Mat matSrc, matSrc1, matSrc2;
matSrc = cv::imread(strSrcImageName, CV_LOAD_IMAGE_COLOR);
CV_Assert(matSrc.channels() == 3);
cv::resize(matSrc, matSrc1, cv::Size(357, 419), 0, 0, cv::INTER_NEAREST);
//cv::flip(matSrc1, matSrc1, 1);
cv::resize(matSrc, matSrc2, cv::Size(2177, 3233), 0, 0, cv::INTER_LANCZOS4);
cv::Mat matDst1, matDst2;
cv::resize(matSrc1, matDst1, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::resize(matSrc2, matDst2, cv::Size(8, 8), 0, 0, cv::INTER_CUBIC);
cv::cvtColor(matDst1, matDst1, CV_BGR2GRAY);
cv::cvtColor(matDst2, matDst2, CV_BGR2GRAY);
int iAvg1 = 0, iAvg2 = 0;
int arr1[64], arr2[64];
for (int i = 0; i < 8; i++) {
uchar* data1 = matDst1.ptr<uchar>(i);
uchar* data2 = matDst2.ptr<uchar>(i);
int tmp = i * 8;
for (int j = 0; j < 8; j++) {
int tmp1 = tmp + j;
arr1[tmp1] = data1[j] / 4 * 4;
arr2[tmp1] = data2[j] / 4 * 4;
iAvg1 += arr1[tmp1];
iAvg2 += arr2[tmp1];
}
}
iAvg1 /= 64;
iAvg2 /= 64;
for (int i = 0; i < 64; i++) {
arr1[i] = (arr1[i] >= iAvg1) ? 1 : 0;
arr2[i] = (arr2[i] >= iAvg2) ? 1 : 0;
}
int iDiffNum = 0;
for (int i = 0; i < 64; i++)
if (arr1[i] != arr2[i])
++iDiffNum;
cout<<"iDiffNum = "<<iDiffNum<<endl;
if (iDiffNum <= 5)
cout<<"two images are very similar!"<<endl;
else if (iDiffNum > 10)
cout<<"they are two different images!"<<endl;
else
cout<<"two image are somewhat similar!"<<endl; 收藏的用户(0) X
正在加载信息~
推荐阅读
最新回复 (0)
站点信息
- 文章2313
- 用户1336
- 访客11759547
每日一句
Happiness depends on your mindset.
幸福取决于你的心态。
幸福取决于你的心态。
新会员